
CRAFT BREWERS CONFERENCE

& BrewExpo America

Development of Thiols and Thiol Precursors in different Hop varieties during Hop Harvest and their impact on beer flavor

Dr. Christina Schönberger

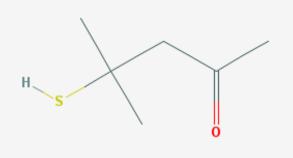
Head of Innovation/Education BarthHaas Germany

Laurent Dagan

Nyseos, France

Background of this study

- Dry hopped craft beers, especially very hop intensive beers, are very successful, brewers have no means to control the hop aroma
- Many of the today used hop varieties are breeded varieties with intensive fruit characters
- Many of these fruit characters are caused by thiols in hops
- Varieties like Citra, Mosaic, Cascade are famous for these fruit characters
- For other varieties like European land varieties these fruit characters are absent
- Thresholds of those fruity thiols are about a factor of 1000 (and more) lower than e.g. threshold of linalool

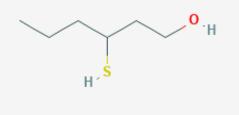


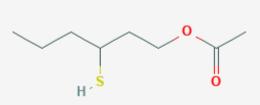
What are thiols and why do they matter?

- Thiols (R-SH) and mercaptans are organosulfur compounds that contain a sulfur-hydrogen bond
- The -SH group is an acid and a nucleophile for attacks on saturated carbon
- Polyfunctional thiols are thiols with other functional groups, e.g. alcohol
- Oxidisable and convert to disulfides, hydrolized to thiols – reactive
- Mercapto relates to the ability to bind mercury (II) ions (capturing Mercury)
- Aromatic and volatile compounds in wine, milk, cheese, vegetables, fruits...hops
- Thiols (R-SH) are powerful odorant volatiles participating to the hoppy character of beer.
- Hops represents a significant source of thiol precursors either as free or bound forms

Polyfunctional thiols

4-Mercaptomethylpentan-2-one= 4MMP=4S4M2Pone4ng/L

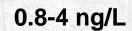


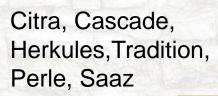


Citra, Mosaic, Cascade, Simcoe, Sorachi Ace

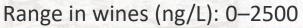
Range in wines (ng/L): 4-40

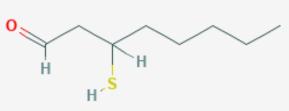
3-Mercaptohexan-1-ol= **3MH** = 3SHol

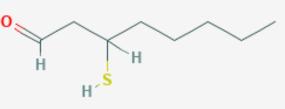

60ng/L

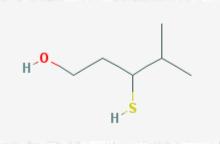

Citra, Cascade, Herkules, Tradition, Perle, Saaz

Range in wines (ng/L): 26-18,000


3-Mercaptohexvlacetate = **3MHA**=3SHA





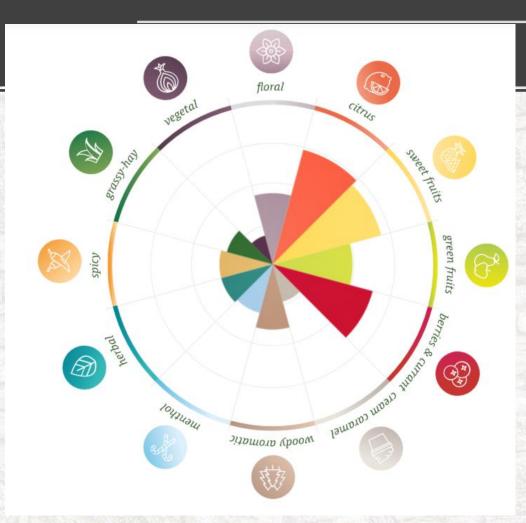


Polyfunctional thiols

3-Mercapto-octanal= 3MO = 3SOal

Found in Tomahawk/Nelson Sauvin

3-Mercapto-4-methylpentan-1-ol=3M4MP=3S4MPol



Mosaic, Amarillo, H. Blanc, **Nelson Sauvin**

Sensory analysis for hops – Hopsessed ® Example Citra

Assesment of hop varieties with 12 categories: Intesnity rating 1-10, naming of specific attributes

citrus

Grapefruit, Orange, Lime, Lemon, Bergamot, Lemon Grass, Ginger, Tangerine, Pomelo

green fruits

Pear, Apple, Quince, Gooseberry, White Wine Grapes

cream caramel

Butter, Chocolate, Yoghurt, Honey, Cream, Caramel, Toffee, Coffee, Tonka Bean, Vanilla, Coconut

woody aromatic

Tobacco, Cognac, Barrique, Leather, Woodruff, Incense, Myrrh, Resin, Cedar, Pine, Earthy

sweet fruits

Banana, Watermelon, Honeydew Melon, Peach, Apricot, Passion Fruit, Lychee, Dried Fruit, Plum, Pineapple, Cherry, Kiwi, Mango, Guava

herbal

Marjoram, Tarragon, Dill, Parsley, Basil, Fennel, Coriander, Rosemary, Thyme, Green Tea, Black Tea, Mate Tea, Oregano

vege

Celeriac, Leek, Onion, Artichoke, Garlic, Wild Garlic, Radish

berries & currant

Cassis, Blueberry, Raspberry, Blackberry, Strawberry, Red Currant, Black Currant, Wild Strawberry, Cranberry, Mulberry

Menthol, Wine Yeast, Eucalyptus

grassy-hay

Green Grassy, Fresh Cut Grass, Hay, Tomato Leaves, Green Pepper, Nettle, Cucumber, Bamboo Leaves

flora

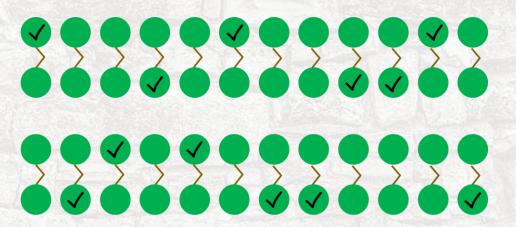
Elderflower, Camomile Blossom, Lily Of The Valley, Jasmine, Apple Blossom, Rose, Geranium, Carnation, Lily, Lilac, Lavender, Osmanthus

g spi

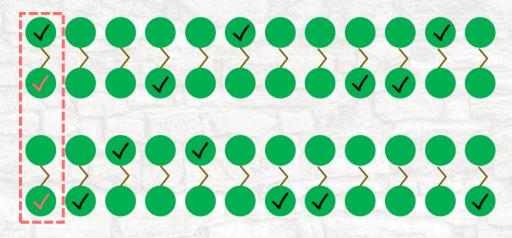
Lovage, Pepper, Chilli, Curry, Juniper, Aniseed, Liquorice, Fennel Seeds, Clove, Cinnamon, Gingerbread, Coriander Seeds, Nutmeg

Connection Sensory & Analytics

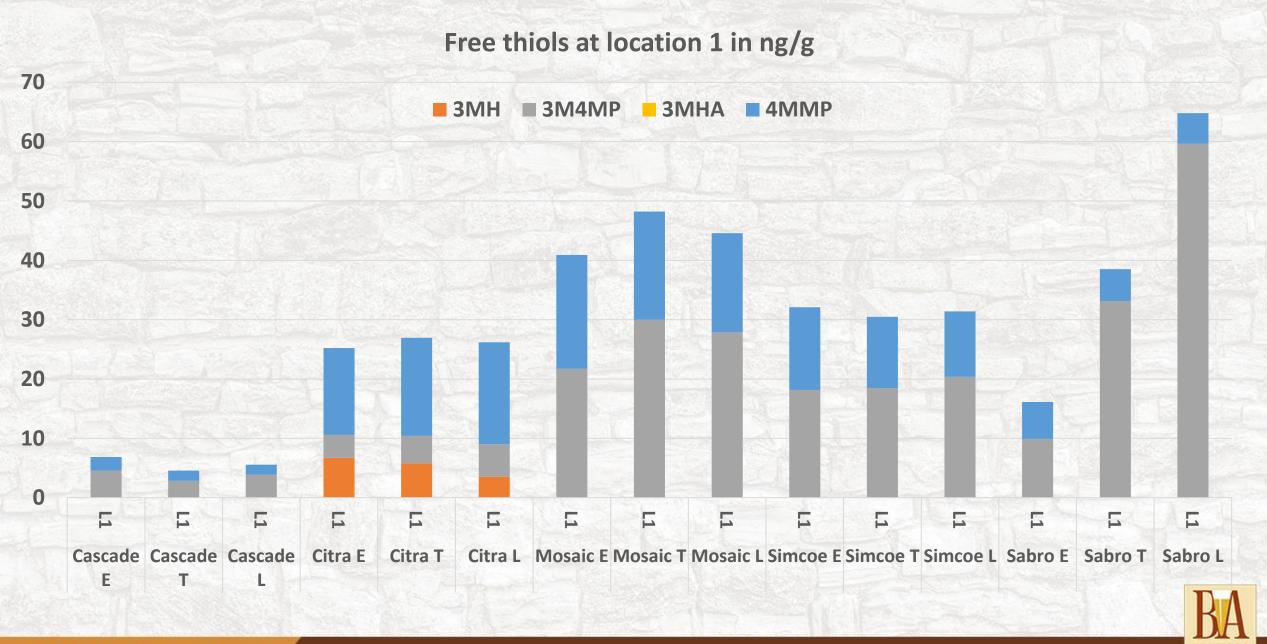
Descriptors	Possible Key Compounds	
Floral	Geraniol, Citronellol, 2-Decanone, a-Ionone, a-Terpineol, Rose Oxide	
Citrus	Limonene, Linalool, Myrcene, Ethyl-2-methylbutanoate, α-Pinene 3M4MP, 3M4MPA, 3MHA, 3MH, 4MMP	
Sweet Fruits	3MH, 3MOal, 4-MMP, ethyl 3-(methylthio)-propionate	
Green Fruits	b-Damascenone, 2-Methylbutyl 2-methylpropanoate	
Red Berries	4MMP, 4-(4-Hydroxyphenyl)-2-butanone, a-Ionone, b-Damascenone	
Cream Caramel	Lactones, Vanillin	
Woody	Myrcene, 8-Acetoxylinalool, a-Cadinene, a-Calacorene, a-Ionone, a-Terpineol, Benzaldehyde, Eudesmol, Farnesen	
Menthol	4,4-Dimethyl-2-buten-4-olide, 3-Methyl-2-butanone, 3-Nopinenone	
Herbal	Humulene, Humulenol epoxides, Rose Oxide, a-Cadinene	
Spicy	Oxygenated sesquiterpenoids, b-Caryophyllene, Caryophyllene epoxide	
Green Grassy	2 Dodecanone, Myrcene disulfide, E,Z-2,6-Nonadienal, Cis-3-Hexenol	
Vegetal	Polyfunctional thiols, 1-Octen-3-ol, DMS, 3MBT	


Table 15 $-$ The list of passion fruit VSCs reported in the literature.			
VSC	Reference		
1,1-bis-(methylthio)-2-methylpropane	[147]		
2-(methylthio)-ethyl acetate	[147]		
2-methylbutyl 3-(methylthio)-propionate	[147]		
3-(1-acetoxy-3-hexyldithio)-hexyl acetate	[147]		
3-(1-acetoxy-3-hexyldithio)-hexyl butyrate	[147]		
3-(1-acetoxy-3-hexyldithio)-hexyl hexanoate	[147]		
3-(1-butyryloxy-3-hexyldithio)- hexyl butyrate	[147]		
3-(1-butyryloxy-3-hexyldithio)-	[147]		
hexyl hexanoate	• •		
3-(1-hydroxy-3-hexyldithio)-hexanol	[147]		
3-(1-hydroxy-3-hexyldithio)-hexyl acetate	[147]		
3-(1-hydroxy-3-hexyldithio)-hexyl butyrate	[147]		
3-(methylthio)-hexanol	[141,142,144,		
	145,147]		
3-(methylthio)-hexyl acetate	[144,147]		
3-(methylthio)-hexyl butyrate	[144,147]		
3-(methylthio)-hexyl hexanoate	[144,147]		
3-(methylthio)-propanal (methional) 3-(methylthio)-propionate	[147] [144]		
3-(methylthio)-propionic acid	[14]		
3-(methylthio)-propyl acetate	[147]		
3-(methylthio)-propyl butyrate	[147]		
3-(methylthio)-propyl hexanoate	[147]		
3-mercapto-3-methylbutanol	[157]		
3-mercapto-3-methylbutyl acetate	[157]		
3-mercaptohexanol (3MH)	[14,144,145,147,157]		
3-mercaptohexyl acetate (3MHA)	[14,144,146,147,157]		
3-mercaptohexyl butyrate	[14,144,146,147,157]		
3-mercaptohexyl hexanoate	[14,144,147]		
3-mercaptohexyl pentanoate	[147]		
3-methylbutyl 3-(methylthio)-propionate	[147]		
4-methyl-5-vinylthiazole	[140,144,147]		
butyl 3-(methylthio)-propionate	[147]		
(Z)-2-methyl-4-propyl-1,3-oxathiane	[141,142,143, 144,146,147]		
(Z)-3-hexenyl 3-(methylthio)-propionate	[147]		
diethyl disulfide	[147]		
diisopropyl disulfide	[147]		
diisopropyl trisulfide	[147]		
ethyl 2-(methylthio)-acetate	[147]		
ethyl 3-(methylthio)-(Z)-2-propenoate	[147]		
ethyl 3-(methylthio)-propionate	[14,141,142,143,		
	144,146,147]		
ethyl 3-(methylthio)-(E)-2-propenoate	[141,142,143,		
athul 2 managatahutamata	144,146,147]		
ethyl 3-mercaptobutyrate	[14]		
hexyl 3-(methylthio)-propionate hexyl 3-(methylthio)-(E)-2-propenoate	[147] [147]		
isobutyl 3-(methylthio)-propionate	[147]		
methyl 2-methylbutyl disulfide	[147]		
methyl 3-(methylthio)-(Z)-2-propenoate	[147]		
methyl 3-(methylthio)-propionate	[147]		
methyl 3-(methylthio)-(E)-2-propenoate	[147]		
pentyl 3-(methylthio)-propionate	[147]		
propyl 3-(methylthio)-propionate	[147]		
propyl 3-(methylthio)-(E)-2-propenoate	[147]		
sec. butyl 3-(methylthio)-propionate	[147]		
s-methyl acetothioate	[147]		
(E)-2-methyl-4-propyl-1,3-oxathiane	[141,142,143,144,		
	146,147]		

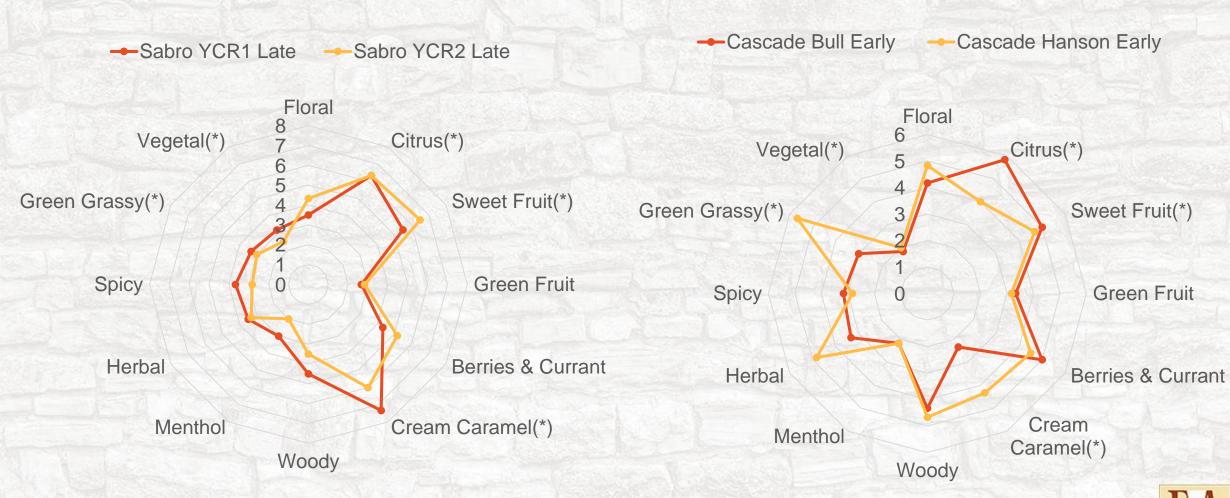
Timeline of project


- Hop samples were collected in harvest 2019
- Hop samples arrived in Germany/France in October
- Analysis ran from Nov 19 to Feb 20
- Sensory profiles of hop samples are being compiled (Compusense, Hopsessed)
- Due to pandemic concept brewery had to be closed until May 1st.
- Brewing will start in June 20

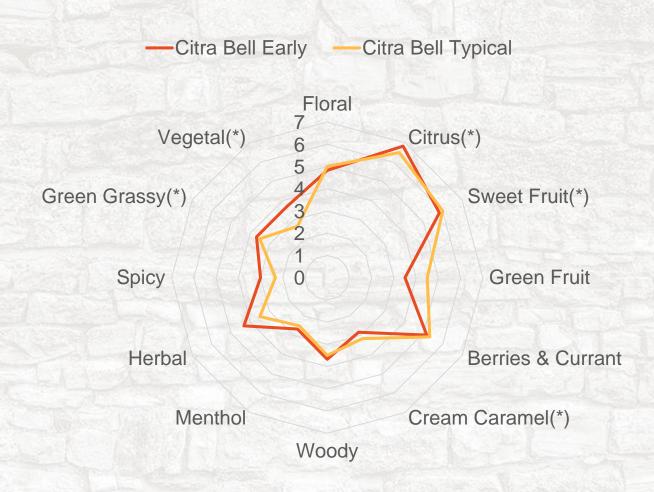
- Select Hop varieties (6)
- Determine harvest dates (early, typical, late)
- Determine harvest locations
- Determine harvest and kilning procedures (same for all samples)
- 30 Samples sent to Germany
- Samples split between France and Germany
- Analysis in France (Nyseos)
- Brewing Trials in Nuremberg (Barth Haas)

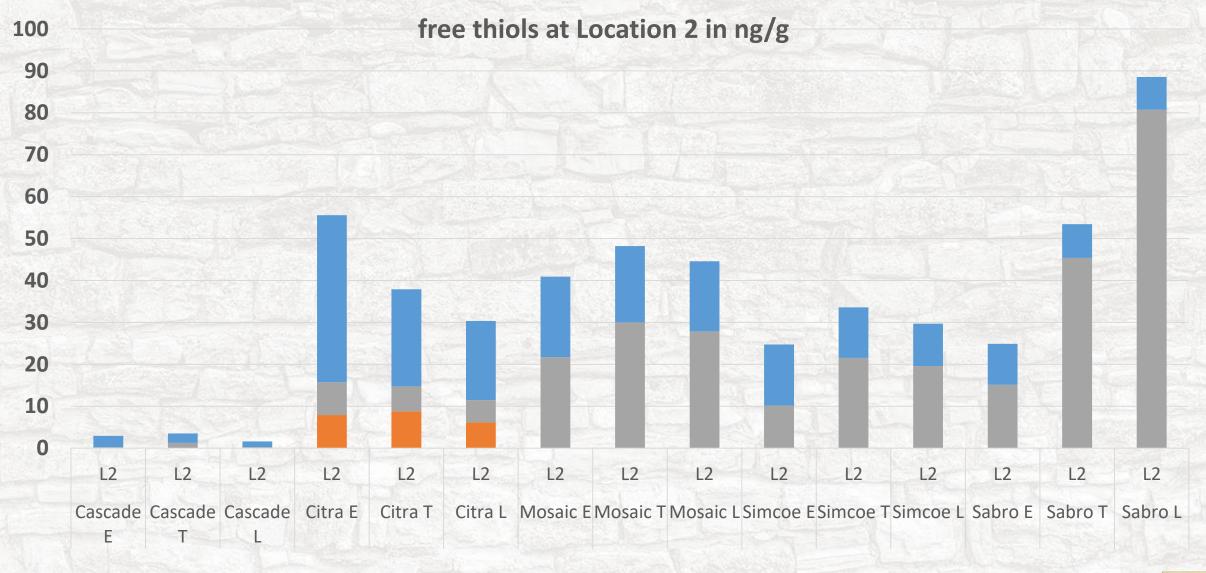


Identify 12 random bines for each variety/location for Early Harvest 1 bine = 500g dry cone

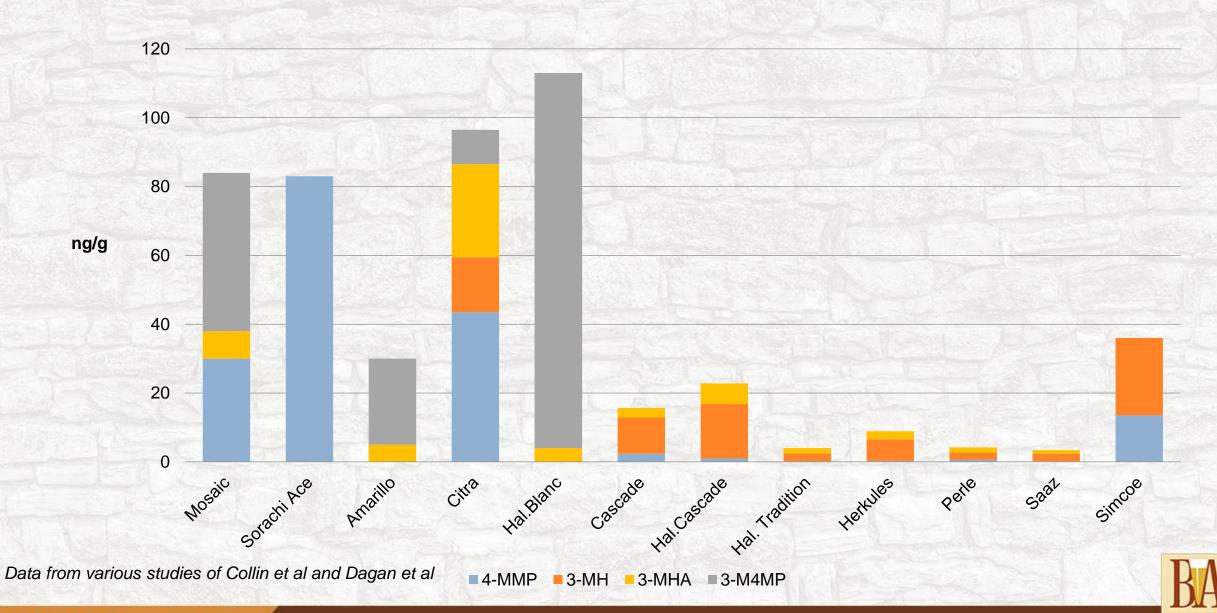


For Typical and Late Harvest, select randomly from three remaining bines in same rows, ensuring broadest selection for each harvest, across the whole plot

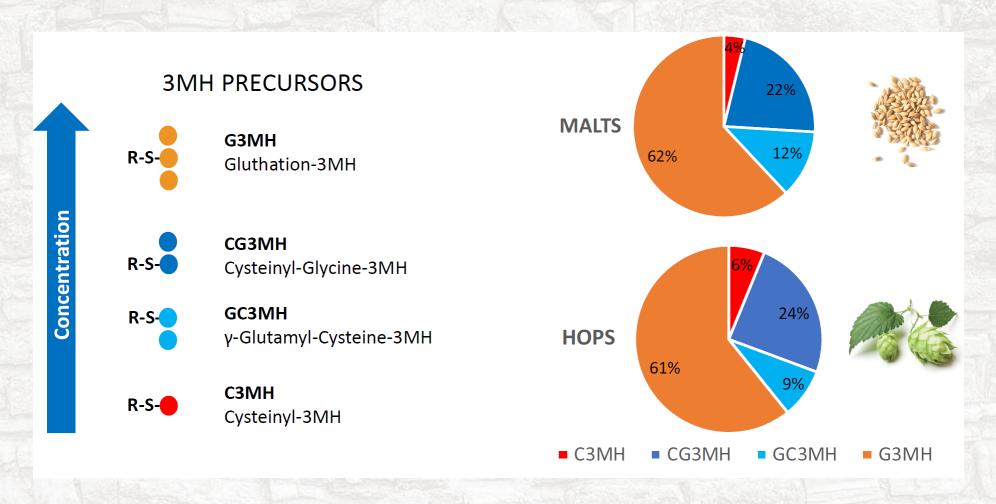



Sensory Profiles same time/diff. location

Sensory Profiles same loc/diff. time

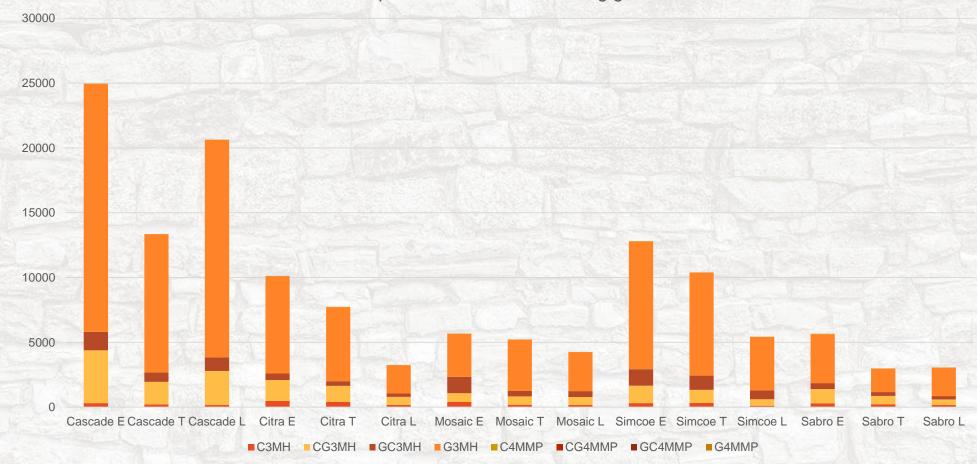


■ 3M4MP


3MHA

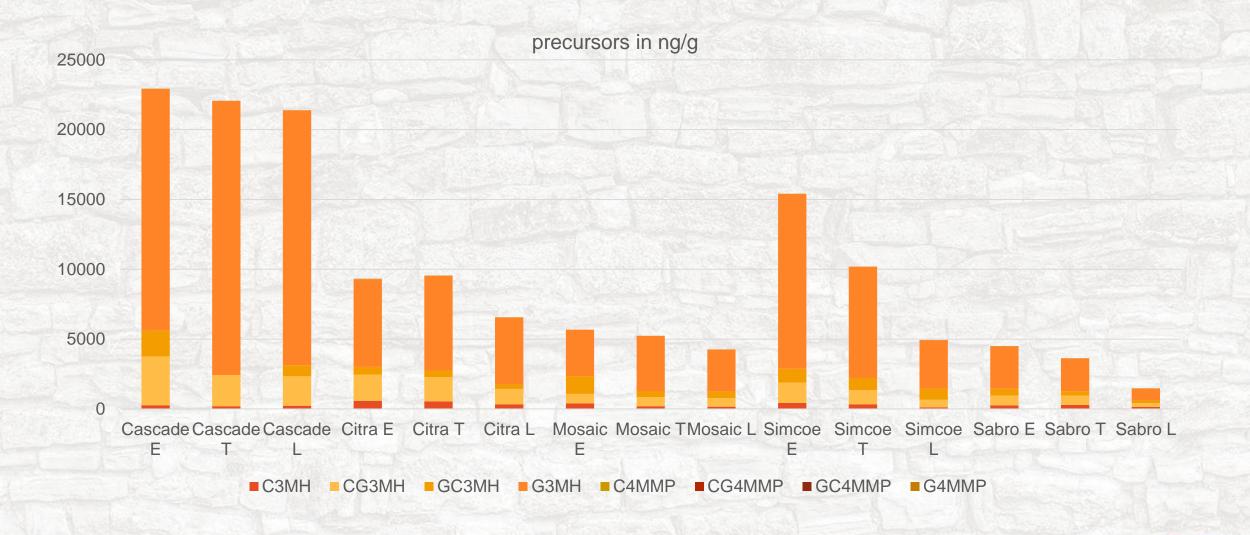
Published data on free thiols in hops

Precursors in malt and hops

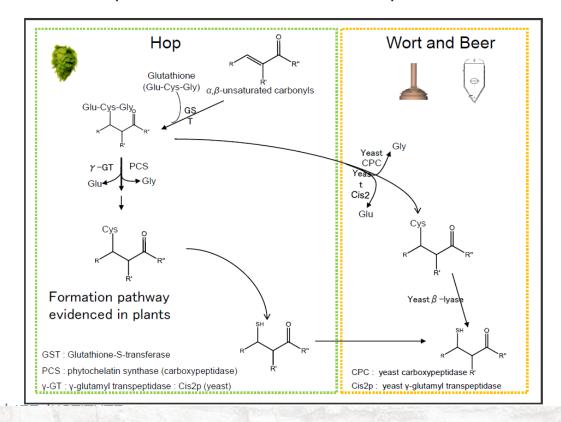


Dagan, L.: Brewing Summit 2018

Amount of precursors of 3MH at Location 1


precursor in location 1 in ng/g

- Factor 1000 between free thiols and Gluthathion precursors
- No or very little precursor structure of 4 MMP detected


Amount of precursors of 3MH at Location 2

Possibilities for thiol release in brewing

Thiols precursors transferred from hop to wort

Kankolongo, EBC, 2015

Various enzymes are needed for thiol release: Glutathion-S-transferase, Carboxypeptidase, Beta lyase Some precursor structures are present 1000 times the free thiols, high potential for flavour (good and bad)

Sources for enzymes:

Hops

Malt

Commercial Enzyme preparations:

Brewing Yeasts

Wine yeasts

Wild yeasts

Other

Precentage of release from wine research up to 10% For brewing 0,3% (Dagan)

Questions for Brewing

- How can we release thiols from precursor structures during brewing in a practical/efficient way?
- Under which conditions are the enzymes needed for this process most efficient, how can we translate this to common brewing practice?
- How would this impact hop aroma intensity and quality – will quality change?
- It must be practical for the brewers (work with brewing yeasts, work with enzymes, avoid mixed fermentations, avoid 2nd fermentations)

Conclusion and Outlook

- Location has a small impact on analytical values of thiols
- The sensory profile is influenced by harvest time and location, this is variety dependend
- Weak correlation of 3M4MP and Citrus and 4MMP and Berries & Currants
- Work with hops high in precursors (Cascade) and high in free thiols (Sabro), plus Citra and Mosaic, 4-6 hop samples
- Work with Standard Ale Yeast, with identified Lager yeast from previous trials with TUM (D308), and other Yeasts
- Combination with available commercial enzymes?
- Time point: Dry hop addition at end of main fermentation (1 time point)

Thanks to

Brewers Association for funding this project

Thanks to the team of Nyseos (names)

Thanks to the Brewing Solution Team of BarthHaas

Thanks to the John I Haas Team for providing the Hop Samples

Thanks to passionate scientists and brewers that help to discover the power of thiols